Finite propagation speed and kernel estimates for Schrödinger operators

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Propagation Speed and Kernel Estimates for Schrödinger Operators

I point out finite propagation speed phenomena for discrete and continuous Schrödinger operators and discuss various types of kernel estimates from this point of view.

متن کامل

Ü Estimates for Time - Dependent Schrödinger Operators

It is well known that the local decay estimates (2) are useful in studying nonlinear Schrödinger equations (see [8, §XI.13], [11]). On the other hand little seems to be known when one replaces the free operator HQ by more general Hamiltonians (4) H = -A + V(x), even when the potential V is in C^°(R). Obviously, one has to assume that H has no bound states for an estimate like (2) to it M hold f...

متن کامل

Edge currents and eigenvalue estimates for magnetic barrier Schrödinger operators

We study two-dimensional magnetic Schrödinger operators with a magnetic field that is equal to b > 0 for x > 0 and −b for x < 0. This magnetic Schrödinger operator exhibits a magnetic barrier at x = 0. The unperturbed system is invariant with respect to translations in the ydirection. As a result, the Schrödinger operator admits a direct integral decomposition. We analyze the band functions of ...

متن کامل

Semiclassical resolvent estimates for Schrödinger operators with Coulomb singularities

Consider the Schrödinger operator with semiclassical parameter h, in the limit where h goes to zero. When the involved long-range potential is smooth, it is well known that the boundary values of the operator’s resolvent at a positive energy λ are bounded by O(h−1) if and only if the associated Hamilton flow is non-trapping at energy λ. In the present paper, we extend this result to the case wh...

متن کامل

Some Estimates of Schrödinger-Type Operators with Certain Nonnegative Potentials

where the potential V belongs to Bq1 for q1 ≥ n/2. We are interested in the L boundedness of the operator∇4H−1, where the potential V satisfies weaker condition than that in 5, Theorem 1, 2 . The estimates of some other operators related to Schrödinger-type operators can be found in 2, 5 . Note that a nonnegative locally L integrable function V on R is said to belong to Bq 1 < q < ∞ if there ex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2007

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-07-08857-0